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LETTER TO THE EDITOR 

Reaction front propagation in a turbulent flow 

Sergei P Fedotovt 
Institut f~ Technische Mechanik, RWTH Aachen, Templergraben 64, D-52056 Aachen, 
Germany 

Received 24 April 1995 

AbstracL The Iarge.de dynamics of a reaction front in a turbulent Bow in the limit of 
large Reynolds number has been sNdied starring from the K o l m o g o r o v - P e u o v s l s ~ ~ o "  
equation, modified by the random convection term. Random velocity has been assumed to be 
a homogenenu Gaussian field with Kolmogorov energy specmm and infrared divezgence. An 
upper bound for the position and speed of the reaction front in the long-time. large-distance limit 
has been derived by the method of random characteristics and a renormalization procedure. It 
has been shown that the infrared divergence of the random velocity field leads to the acceleration 
of a coarse-grained reaction front. 

Reaction front propagation in a turbulent flow is a problem of considerable significance both 
for applications in combustion science and also for understanding the nature of turbulence 
itself. It has been investigated, by many authors using different techniques and methods (for a 
recent review see [I]). The main purpose of such studies is the determination of the turbulent 
burning velocity, which is the overall propagation rate at which a reaction front propagates 
throughout a turbulent flow. The big progress in this area has been achieved by applying 
the so-called G-equation, describing the front propagation by the Huygens mechanism [2- 
101. This equation, has been studied using numerical methods [4,5], renormalization-group 
approach [6,7], scaling analysis [8,9], and the path-integral approach [IO] proved to be 
very useful in the determination of the turbulent burning velocity. 

In this paper we present an alternative approach to the problem of reaction front 
propagation in a random velocity field which is also based on a geometric optics 
approximation but is different in many important aspects. We develop an equation describing 
the long-time, large-distance behaviowbf a reaction front, stirfing with a nonlinear equation 
of Kolmogorov-Petrovsii-Piskunov (WP) type with a random convection term. Our primary 
interest is to describe the front propagation on length and timescales that are larger than the 
integral length scale of turbulence, lo, and the turnover time-scale to * lo/uo, where ug is the 
typical velocity of the energy containing eddies of the turbulence. The prbcedure used is an 
adaptation of the functional integral technique, which has been used by Freidlin and GZrtner 
for studying nonlinear reaction-diffusion equations [I 1-14], and of exact renormalization 
theory for turbulent transport, which has been developed by Avellaneda and Majda [15,16]. 

t On leave from Department of Mathematical Physics, Urd Sfate University, Yebrinburg, 620083, Russia. 
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Let us start with a non-dimensional equation for a scalar field p(t. I) 

(1) 

where the velocity w ( f ,  I) is assumed to be a homogeneous random field with zero mean 
and the nonlinear source term c(p)p is of KPP type, i.e. 

- a(P + ~ ( t ,  I). Vp = DVZp+c((p)p I E R3 
at 

Here the Kolmogorov length scale 7 = ( u ~ / E ) ~ / ~ ,  velocity scale UI = (uE)l I4 and time-scale 
tk = v/uk are used as units of space coordinates, velocity and time, respectively; Z is the 
average dissipation rate. The diffusion coefficient is non-dimensionalized by the viscosity 
V. 

The initial condition is 

It should be noted that (1) has been studied by Souganidis and Majda [ 171 for a random 
velocity field involving two separated length scales. Here we will be concerned with a 
random flow with arbitrary many spatial scales. 

It can be expected that the macroscale front dynamics for (1)-(3) will be described 
through an effective equation with the effective parameters depending on the statistical 
characteristics of the random velocity field ~ ( t ,  I). We propose the following formula 
determining the reaction front position in the long-time largedistance limit: 

SG = {I E R3 : G(t ,  I) = 01 

where 

and p* is a solution of (1)-(3) when c(q)  is replaced by its maximum value c. Here the 
angular brackets (.) denote the ensemble averaging over velocity statistics and A(<) is a 
positive function such that linq-0 A(€) = 0. The small parameter 6 is taken to be the ratio 
of the Kolmogorov length scale 7 to the integral length scale lo ,  that is E = Re-’l4, where 
Re = UO&V is a Reynolds number. The scaling function A(€) has to he determined under 
the condition of existence of a non-trivial limit (4) and this problem is analogous to that of 
determining nonlinear rescaling in the exact renormalization theory for turbulent transport 
[15,16]. The manifold SG can be interpreted as a reaction front when 

To illustrate the basic ideas presented in this paper, it is instructive to first consider a 
special case of the problem (1)43), namely the onedimensional KPP equation 
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with the initial condition 

It is well known that the function q F ( t , x )  =~ ~ ( ~ / E , x / E )  tends, as E + 0, to a 
progressive wave x ( x  - u t )  travelling on the positive x-direction with constant speed 
U = (4cD)'/'. Freidlin was the first to treated the problem (5), (6) and its generalizations 
by means of functional integrals [ll-141. Let us reformulate the Freidlin treatment of the 
KPP equation' by using an alternative approach which is particularly suited for our further 
consideration.' Instead of equations (5) and (6), let us consider an auxiliary first-order 
differential equation 

with the initial condition 

P"(0,X) = x(x) (8) 

where the auxiliary random process v ( t )  is a white Gaussian noise with a probability density 
functional of the form 

Let us show now that in the limit E + 0, the ensemble average 

tends to the unit step function x ( x  - uf )  and the function 

determines the position of the wavefront (compare with (4)). 
transformation t + t / c ,  x + X / E  to (7) and (8), we can get 

Applying the scaling 

It follows from the method of characteristics that the solution of (11) is given by the 
integral equation 
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Using equations (9), (12) and c(p) < c, we find that 

where 

X 2  

4Dt 
G ( ~ , x )  = Cf - -. 

One may conclude from this bound that lim.+~(p~(f, x)) = 0 provided that G(t ,  x )  e 0. 
One can also find that lim,,O(pf(f x ) )  = 1 when G ( r , x )  > 0 [14]. This means that an 
equation G(r, x )  = 0 gives us a positron of front x(f) = (4cD)'l2t and its propagation rate 

The question arises as to whether this simple analysis can be adapted and extended to the 
random-advection problem (1)-(3), with a view of determining the coarse-grained position 
and speed of a reaction front as E -+ 0. This is a very difficult problem and therefore it 
is reasonable to consider this problem under the simplest but non-trivial conditions. In this 
paper we assume that the velocity v is a Gaussian random field of the form [ 15,161 

" :. 
i ( t )  = (4cD)'/'. 

v = (0, u(t, x ) .  0) (14) 

with a zero mean and a correlation function with Kolmogorov spectrum given by 

/exp(ik(x -x') -alk[*Plt- t ' l }@o @w(lkl)lkl-5/3dk 

(15) 
( I k 1 )  

1 
(u( i ,x )u( t ' ,x ' ) )  = - J z  

where @&) and @&) represent infrared and ultraviolet cut-offs and satisfy 

An important feature of this random velocity field is the infrared divergence of energy since 
(9) + co as E + 0. 

Although the model (14x16) is not a particularly realistic description of a turbulent 
flow, we think that its simplicity enables us to determine many of the important features 
of reaction front propagation in a raidom velocity field analytically, but, perhaps more 
importantly, it helps us to identify the basic physics mechanisms that lead to the acceleration 
of a flame front (see equation (31)). 

The problem defined by ( 1 x 3 )  and (14)-(16) requires the solution of the nonlinear 
stochastic PDE. However, one may conclude from (13) that the limit E --f 0 allows us to 
determine the upper bound for the position and propagation rate of a reaction front for the 
nonlinear problem (5) and (6) considering only linear approximation. For this reason, in 
what follows, we consider instead of (1H3) a linear equation 
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with initial condition 

The independent zero-mean white Gaussian noises U&) and u,(t) are chosen to have the 
same value of noise intensity parameter as a diffusion coefficient D in (1): 

( U ~ @ ) U ~ ( ~ ' ) )  = 2D8(t - t') (uY(t)uy(t'))  = 2D6(t - t ' ) .  (19) 

We wish now to find the upper bound for the macroscale position and speed of a reaction 
front propagating in the positive ydirection. Consider a scaling transformation 

After rescaling one can get an equation for 

in the following form: 

Let @ ( t , x )  be the Fourier transformation of qo' ( t ,x ,  y) in the variable y 

Then the transformation of (20) yields 

This equation can easily be solved by the method of characteristics. 'The stochastic 
characteristic curves are 

x ( t )  = x - f l' U, ( i )ds  
A 

and the solution q$ is given by 

$( t , 'x )  =y$(O)exp 
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Applying the Fourier inverse transformation, we have 

Now let us find an average value (pf ( t .  x ,  y ) ) .  Since u( t ,  x). and q(f)  are assumed 
to be statistically independent, the average (.) can be thought of as three independent 
averages over u(t. x ) ,  U, and uJ. By using the well known formha for zero-mean Gaussian 
variables {expf) = exp((C2)/2) we obtain 

where 

If we introduce into this formula the relations (15) and (19) we obtain 

This equation implies that (rp') is independent of x. 
Now we are in a position to find the limit of ((of) as E + 0 and thereby the equation 

determining the upper bound for the position and speed of a macroscale reaction front. 
First, the infrared divergent integral in (27) which occurs in the limit E -+ 0 has to be 
rendered finite. In this case, a renormalization procedure can be set up, analogous to that 
described in [U, 161 and with the same conclusion, that infrared divergence of the velocity 
field (14)<16) leads to a new scaling law A(€). 

Since the integral 

is convergent, the wavenumber k should be rescaled as k + ek. 
Then 
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It is now apparent that the function $ ( t )  has a non-trivial limit as E + 0, when 

’ A(e) = t4I9 (28) 

so that 

&(t)  = lim &(t) = D,r2 (29) 
(-0 

where 

Since Iii,+o~/h(a) = 0, the contribution from the white Gaussian noises U&) and q( t )  is 
negligible. This result agrees, of course, with that obtained in [15] by using the Feynman- 
Kac formula. 

Using equations (25) and (29) we find 

G(t, y) = lim I ( < )  In 
S - r O  

This can be regarded as the equation which determines the upper bound for the position 
y(t) and the propagation rate u( t )  of a reaction front in  the long-time large-distance limit. 
By equating G(r, y) to zero, we find 

(31) 

Clearly, in the limit E + 0, the ‘reaction zone’ shrinks to the surface dividing the space 
into two regions, so that 

dy 
dr 

y(t) = (4cD.t3)’/’ U ( ? )  = - = 3 ( ~ D , , t ) ’ ’ ~ .  

It should be noted that the relation 

remains to be proved rigorously. 
The question is what relevance do the results obtained here have to experimental studies 

of front propagation? In the combustion literature, for example, one can find a discussion 
on the existence of a stationary turbulent burning velocity, since there is some experimental 
evidence of the continual growth of turbulent buming rate with time 111. The results can also 
be considered as a quantitative description of the mechanism by which the random velocity 
field accelerates the reaction front and thereby creates the conditions for the occurence of 
something like the deflagration-to-detonation transition [ 181. 

To summarize, we have derived the upper bound for the position and propagating 
rate of a large-scale reaction front by using the method of random characteristics and 
renormalization procedure. Our basic model was defined to include the KPP equation 
modified by the simple shearing motion with a stationary Gaussian random field exhibiting 
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an infrared divergence in the high Reynolds number h i t .  The main physical result is that 
the infrared divergence of velocity field (14k(16) leads to the acceleration of a macroscale 
reaction front (u(t)  - t'Iz). Clearly. this phenomenon is physically due to the increase of 
the transport process by enhanced time-dependent diffusion D,t in the y-direction, which 
dominates the molecular diffusion and yields faster front propagation. 

To conclude, we wish to point out that the analysis presented here can be extended 
to the more complex statistics of velocity field [15,16]. It would be very interesting to 
take into account the possible crossover between different scaling regimes as the spectral 
parameters of a random velocity field are varied. This is clearly of major interest for our 
understanding of the largescale dynamics of reaction fronts in a fully developed turbulent 
flow. 

Financial support from the Humboldt Foundation and EC Project INTAS-94-2580 is 
gratefully acknowledged. My thanks to Rupert Klein for'useful discussions. 
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